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Overview
• Introduction to Genetic Programming

• Populations and Generations
• Mutation and Crossover
• Fitness and Natural Selection

• Genetic Programming applied to the doubly Cabibbo
suppressed decays Λ+

c → pK+π− and D+
s → K+K+π−

• Exploration of GP specific systematic uncertainties
• Conclusions
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What is Genetic Programming
Genetic programming is a machine learning algorithm based on
two assumptions:

To find solutions to a problem, we mimic biology and the
evolutionary process.

Since we will use computer programs to implement our
solutions, the form of our solution should be a computer
program.

Genetic Programming applies a biological model which includes
reproduction, mutation, and survival of the fittest to
automatically discover computer programs.

• Pioneered by John Koza: Genetic Programming: On the
Programming of Computers by Natural Selection (1992)

• Since 1992, more than 3,000 papers applied to a wide range
of problems in many disciplines
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Populations and Generations
Genetic Programming works by transforming one group of
programs (simple event filters in our case) in generation n into
another group of programs in generation n + 1. There are
typically a few hundred to a few thousand programs per
generation.

The initial programs in the 0th generation are generated
completely randomly.
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Gene Cross-over and Mutation
1) Biological

(DNA)
Cross-over

2) Mutations in nature change the genetic code for a small region
of DNA. Usually are harmful or neutral; occasionally helpful
(creates a better/different protein).

Mutations can restore lost (or never present) diversity.

These two processes, combined with natural selection,
drive biological evolution.
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Tree Representation
Genetic Programming fundamentals are easier to illustrate if we
adopt a “Tree” representation of a program. An example of this
representation:

Code: Program tree

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

IF

>

x y

+

×

x x

y

+

×

y y

x
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Crossover (Recombination)
Two programs and crossover points within them are chosen.
Sub-trees are removed and swapped between trees, giving two
new “children”

−

+

x 1

y

+

1 ×

x x

→

−

x y

+

1 ×

+

x 1

x

It may combine the best aspects of both parents into one child (of
course, we are just as likely to end up with the worst aspects in
one child).
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

y y

Pick a parent & mutation point
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

Pick a parent & mutation point
Remove the sub-tree
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the sub-tree
Randomly build a new sub-tree

Mutation can often be very destructive in Genetic Programming
Remember, both crossover and mutation are random processes.
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Survival of the Fittest
In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is one of the
basic tenets of evolutionary theory.

The Genetic Programming method mimics this by determining a
fitness for each individual. Which individuals reproduce is based
on that fitness.

• The better the fitness, the better the solution
• The problem must allow for inexact solutions. There may

be a single correct solution, but there must be a way to
distinguish between increasingly incorrect solutions.
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Reproduction Probabilities
To select which individuals are chosen to populate the next
generation, they are randomly chosen according to their fitness.
We use something like a roulette wheel where the size of the slot
is proportional to the fitness.

Good Fitness

Bad Fitness

• The best individual is most likely to be chosen, but is not
guaranteed to be chosen

• The worst individual may be chosen
• Best “sub-programs” (like genes) tend to surviveEric Vaandering – Genetic Programming Search for Λ+
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Running the GP
Putting it all together, we are ready to “run” the GP (find a
solution).

• User has defined functions, variables, and measure of
fitness

• Generate a population of programs (few hundred to few
thousand) to be tested

• Test each program against fitness definition
• Choose genetic operation (crossover/mutation) and

individuals to create next generation, randomly according
to fitness

• Repeat process for next generation
• Often tens of generations are needed to find the best

solution
• At the end, we have a large number of solutions; look at the

best
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Application to HEP
OK, so all this is interesting to computer scientists, but how does
it apply to physics, specifically HEP?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variables we think are
interesting, and then require that an event pass the AND of a set
of selection criteria.

Instead, what if we give a Genetic Programming framework
some variables we think might be interesting, and allow it to
construct a filter for the events?

• If an AND of cuts is the best solution, the GP can find that
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Questions
When considering an approach like this, some questions
naturally arise:

• Does it do as well as normal cut methods do?
• How do we know it’s not biased?
• The tree can grow large with useless information.
• Is it evolving or randomly hitting on good combinations?
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Evaluating the GP
We chose to work with doubly Cabibbo suppressed decays
normalized to Cabibbo favored decays where only the charge of
the particles is different. Two nearly identical decays → less
stringent systematics.

We use the GP generated trees to classify each event as
“signal-like” or “background–like.” We do this for both CF and
DCS decays and only consider “signal-like” events.

We then calculate a fitness related to the projected significance
from fits to the CF signal and DCS background with the signal
region blinded.

The GP optimizes this fitness as described.
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Pre-GP selection signals
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Signals after GP selection
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Best tree (72nd generation)
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GP Bias Check
Only optimized on half the events. Check the other half:
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Data vs. MC comparisons
We picked DCS decays since the normalizing mode is nearly
identical. It is important that the relative efficiency of the tree for
CF and DCS modes is well modeled by our MC. Unfortunately,
we can’t measure this.

What we can measure is the efficiency of the tree (w.r.t. the base
skim cuts) on data and MC:

Efficiency (GP/Skim)
Data (14.5 ± 0.4)%

Monte Carlo (14.9 ± 0.1)%

We always see such excellent agreement, which means that these
multi-dimensional selections are well modeled by our MC. We
take the nominal discrepancy (0.4%) as a systematic error.
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Comparison with Cut Method
Compare this analysis with an old attempt with normal method:

Branching Ratio with GP:
0.05 ± 0.26%

Branching Ratio with cuts:
0.36 ± 0.33%

Λc, standard cuts
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D+
s Initial Sample

Contributions from D + → K−π+π+ (mis-ID) and Cabibbo
suppressed decay D+ → K−K+π+ included.
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Signals after GP selection
D+ → K−π+π+ (mis-ID) events removed
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Summary of measurements
We also apply more traditional physics systematics studies to get
percentage uncertainties on our knowledge of the relative
(DCS/CF) uncertainties:

Syst. Unc. (%)

Source Λ+
c D+

s

MC statistics 0.6 0.4

DCS resonances 5.3 10.7

CF resonances 2.1 2.6

GP filter 2.6 3.5

Total 6.3 11.6

which gives us the following central values and limits:
Decay mode Central Value Limit (90% CL)
BR(Λ+

c
→pK+

π
−)

BR(Λ+
c
→pK−

π
+)

(0.05 ± 0.26 ± 0.02)% < 0.46%

BR(D+
s
→K+K+

π
−)

BR(D+
s
→K−K+

π
+)

(0.52 ± 0.17 ± 0.11)% < 0.78%
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Conclusions
• I hope, in this very short time, I’ve given you a flavor of

what Genetic Programming is

• These are the first limits for DCS decays of D +
s and Λ+

c

• We have published two articles on this subject
• NIM article on method:

hep-ex/0503007, NIMA 551, pg. 504
• D+

s and Λ+
c rel. branching ratio results:

hep-ex/0507103, PLB 624, pg. 166
• We have shown that GP can be used in HEP event selection

(this is the first application on HEP data)
• Can be used to improve sensitivity over traditional

techniques
• Efficiency of GP event selection is well modeled in FOCUS

We think this novel method deserves further exploration
Eric Vaandering – Genetic Programming Search for Λ+

c
→ pK+

π
− and D+

s
→ K+K+

π
− – p.26/36



Backup slides

Backup slides
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f (n) function
A threshold function used in neural networks:

f(n) =
1

1 + e−n
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SW Mechanics & Conclusions
Is interfacing to an existing experiment’s code difficult?

• Genetic programming framework
• C language based lilgp from MSU Garage group
• Modified for parallel use (PVM) by Vanderbilt Med

Center group
• Parallel version allows sub-population exchange

• Physics variables start with standard FOCUS analysis
• Write HBOOK ntuples, convert to Root Trees
• Write a little C++ code to access Trees, fill and fit

histograms (using MINUIT) and return the fit
information to the lilgp framework

• This is actually pretty easy
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Genetic Programming Process

Create Initial
Population

Evaluate Fitness
of Individuals

Full?
Population

Is

Criteria
Reached?

End

Select
Operation

End
Run

Population
Insert into

Start New
Population

Yes

No

Yes

No

Crossover (90%)

Copy (10%)

Mutate (1%)
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Building a tree
Trees are randomly built up one node at a time.

IF Root node ’IF’ has 3 args.
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Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
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Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

x x

y

+

*

y y

x

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
Remaining branches grown
Tree is complete
(all branches terminated)
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Parallelizing the GP
Each test takes a while (10–60 sec on a 2 GHz P4) so spread over
multiple computers

• Adopt a South Pacific island type model
• A population on each island (CPU)
• Every few generations, migrate the best individuals

from each island to each other island
• Lots of parameters to be tweaked, like size of programs,

probabilities of reproduction methods, exchanges, etc.
• None of them seem to matter all that much, process is

robust
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Practical considerations
Obviously, a tree can grow nearly infinite in size. This is usually
undesirable. There are ways to control this:

• Set limits on number of nodes
• Set limits on depth of nodes
• Create initial topologies of specified depth

A common approach is to allow half of the initial population to
grow completely randomly and to create the other half at a range
of (shallow) depths. In the latter case, pick functions for all nodes
< desired depth, pick terminals for all nodes at desired depth.
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Best D+
s tree (63rd generation)
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